H3Cシミュレーターによる

ルーター基本コンフィギュレーション演習

Copyright

Copyright©2003-2021, New H3C Group.

All rights reserved

No part of this book may be reproduced or transmitted in any form or by and means or used to make any derivative work (such translation, transformation, or adaption) without prior written consent of New H3C Group.

内容

	6
実習内容と目標	6
ネットワーク図	6
実習装置	6
実習手順	7
タスク1:ルーティングテーブルを表示する	7
手順 1:PC とルーターをケーブルで接続する	7
手順 2:ルーティングテーブルを表示します	7
タスク2:static route の設定をします	10
手順 1:PC の IP アドレスを設定する	10
手順 2:static route の計画を立てる	12
手順 3:static route を設定する	12
手順 4∶ルーティングループを作成し、ルーターの転送動作を観察します。	14
質問:	16
VRRP の設定	17
実習内容と目標	17
ネットワーク図	17
中羽壮宏	
天白衣ല	19
天白衣 ^但 実習手順	19 19
天日衣□ 実習手順 タスク1:それぞれの装置に IP アドレスを設定する	19 19 19
天日本□ 実習手順 タスク1:それぞれの装置に IP アドレスを設定する 手順 1:両 PC に IP アドレス、ゲートウェイアドレスを設定する	19
天日本□ 実習手順 タスク1:それぞれの装置に IP アドレスを設定する 手順1:両 PC に IP アドレス、ゲートウェイアドレスを設定する 手順2:SWA, SWB の STP を無効にする	19 19 19 19 20
天日本県 実習手順 タスク1:それぞれの装置に IP アドレスを設定する 手順1:両 PC に IP アドレス、ゲートウェイアドレスを設定する 手順2:SWA, SWB の STP を無効にする 手順3:SWA, SWB に IP アドレス、デフォルトルートを設定する	
 天日本回 実習手順	
天日本回 実習手順 タスク1:それぞれの装置に IP アドレスを設定する 手順1:両 PC に IP アドレス、ゲートウェイアドレスを設定する 手順2:SWA, SWB の STP を無効にする 手順3:SWA, SWB に IP アドレス、デフォルトルートを設定する 手順4:SWAとRTA間、SWBとRTB間にケーブルを接続しRTA, RTB に IP アドレ る	
天日本回 実習手順 タスク1:それぞれの装置に IP アドレスを設定する 手順1:両 PC に IP アドレス、ゲートウェイアドレスを設定する 手順2:SWA, SWB の STP を無効にする 手順3:SWA, SWB に IP アドレス、デフォルトルートを設定する 手順4:SWAとRTA間、SWBとRTB間にケーブルを接続し RTA, RTB に IP アドレ る タスク2:RTA, RTB に VRRP を設定する	
天日本唱 実習手順 タスク1:それぞれの装置に IP アドレスを設定する 手順1:両 PC に IP アドレス、ゲートウェイアドレスを設定する 手順2:SWA, SWB の STP を無効にする 手順3:SWA, SWB に IP アドレス、デフォルトルートを設定する 手順4:SWAとRTA間、SWBとRTB間にケーブルを接続し RTA, RTB に IP アドレ る タスク2:RTA, RTB に VRRP を設定する 手順1:RTA, RTB に VRRP を設定する	
天日本唱 実習手順 タスク1:それぞれの装置に IP アドレスを設定する 手順1:両 PC に IP アドレス、ゲートウェイアドレスを設定する 手順2:SWA, SWB の STP を無効にする 手順3:SWA, SWB に IP アドレス、デフォルトルートを設定する 手順4:SWAとRTA間、SWBとRTB間にケーブルを接続しRTA, RTB に IP アドレ る タスク2:RTA, RTB に VRRP を設定する 手順1:RTA, RTB に VRRP を設定する タスク3:RTA, RTB に OSPF を設定する	19 19 19 19 20 20 マスを設定す 21 21 21 21
末日本垣・ 実習手順 タスク1:それぞれの装置にIP アドレスを設定する 手順1:両 PC にIP アドレス、ゲートウェイアドレスを設定する 手順2:SWA, SWB の STP を無効にする 手順3:SWA, SWB にIP アドレス、デフォルトルートを設定する 手順4:SWAとRTA間、SWBとRTB間にケーブルを接続しRTA, RTB にIP アドレ る タスク2:RTA, RTB に VRRP を設定する 手順1:RTA, RTB に VRRP を設定する 手順1:RTA, RTB に OSPF を設定する 手順1:RTAとRTB間にケーブルを接続しRTA, RTB にIP アドレスを設定する 手順1:RTAとRTB間にケーブルを接続しRTA, RTB にIP アドレスを設定する	19 19 19 19 20 シスを設定す 21 21 21 21 22 22
実日本単. 実習手順	
実目表単 実習手順	
実日本回: 実習手順	
天日女垣 実習手順	リッション シスを設定す シスを設定す シスを設定す シスを設定す シスを設定す シスを設定す シスを設定す シスを設定す シスを設定す シスを設定す シスを設定す シスを記していた。 シュュュュュュュュュュュュュュュュュュュュュュュュュュュュュュュュュュュュ

確認します。	27
手順 1 : PC から HostB へ ping を続けます	27
手順 2:SWA の G1/0/2を shutdown する	27
手順 3:PC から HostB への ping の状態を確認します	27
手順 4:RTA, RTB のルーティングテーブルを表示します	28
手順 5:RTA, RTB の vrrp の状態を表示します	29
タスク 8: VRID 2 のマスターに接続されている SWA のポートを shutdown して切り	リ替えの状態を
確認します。	30
手順 1:SWA の G1/0/2を undo shutdown する	30
手順 2:PC から HostB へ ping を続けます	30
手順 3: SWA の G1/0/3を shutdown する	30
手順 4:PC から HostB へ ping の ping の状態を確認します	30
手順 5:RTA, RTB のルーティングテーブルを表示します	31
手順 6:RTA, RTB の vrrp の状態を表示します	32
NAT の設定	34
実習内容と目標	34
ネットワーク図	34
実習装置	35
実習手順	35
タスク1:基本的な NAT の設定をする	35
手順 1:テスト環境を構築する	35
手順 2:基本的なコンフィギュレーション	36
手順 3:接続性をチェックします	36
手順 4:Basic NAT を設定します	37
手順 5:接続性をチェックします	37
手順 6:NAT エントリーをチェックします	37
手順 7:コンフィギュレーションを元に戻します	41
タスク2:NAPT の設定をする	41
手順 1:テスト環境を構築する	41
手順 2:接続性をチェックします	41
手順 3: NAPT を設定します	42
手順 4:接続性をチェックします	42
手順 5:NAT エントリーをチェックします	42
手順 6:コンフィギュレーションを元に戻します	44
タスク3:Easy IP の設定をする	44
手順 1:テスト環境を構築する	44

手順 2∶接続性をチェックします	44
手順 3:East IP を設定します	45
手順 4:接続性をチェックします	45
手順 5:NAT エントリーをチェックします	45
手順 6:コンフィギュレーションを元に戻します	48
タスク4:NAT Server の設定をする	48
手順 1:接続性をチェックします	48
手順 2:NAT Server を設定します	48
手順 3:接続性をチェックします	49
手順 4:NAT エントリーをチェックします	49
手順 5:コンフィギュレーションを元に戻します	50
質問:	50
PPPoE の設定	52
実習内容と目標	52
ネットワーク図	52
実習装置	52
実習手順	53
タスク1:PPPoE の基本的な設定をします	53
手順 1: ルーター同士を LAN ケーブルで接続する	53
手順 2:PPPoE Server の WAN ポートのための PPP カプセル化の設定と IP アドレ	ノスの割り当
τ	53
手順 3:PPPoE Server の domain の認証を ppp local にする	54
手順 4: PPPoE のローカルユーザーを作成する	54
タスク2:PPP CHAP の設定をします	55
手順 1:PPPoE Client の WAN ポートのための PPP カプセル化の設定と IP アドレス	の設定 55
手順 2:PPPoE Client でデフォルトゲートウェイの設定をします	55
手順 3:PPPoE Server で PPPoE セッションのデバッグをします	56
手順 4:PPPoE Client から PPPoE Server の IP アドレスに対し ping をします	57
手順 5:PPPoE Client で PPPoE Server との接続を確認します	57
手順 6:PPPoE Server で PPPoE Client との接続を確認します	58
基本的な BGP の設定	60
実習内容と目標	60
ネットワーク図	60
実習装置	60
IP アドレス割り当て	61
実習手順	61

手順 1:4 つのルーターに IP アドレスを設定する	61
手順 2:RTA から RTB へ ping する	61
手順 3:eBGP peer を設定する	61
手順 4:BGP peer 情報を表示する	62
手順 5:network コマンドでローカルネットワークをアドバタイズする	63
手順 6:RTA の BGP ルーティングテーブルを表示する	63
手順 3:iBGP peer を設定する	64
手順 3:iBGP peer 情報を表示する	65
手順 4:BGP ルーティングテーブルを表示する	65

IP ルーティング基礎

実習内容と目標

このラボでは以下のことを学びます:

- Static と default route のコンフィグレーション。
- ルーティングテーブルの表示。

実習装置

本実験に必要な主な設備機材 実験装置名前とモデル番号	バージョン	数量	特記事項
MSR36-20	Version7.1	2	なし
V.35 DCEシリアルケーブル	-	1	
V.35 DTEシリアルケーブル		1	
PC	Windows 7	1	なし
ネットワークケーブルの接続		2	なし

実習手順

タスク1:ルーティングテーブルを表示する

このタスクでは、ルーティングテーブルの表示法、ルーティングエントリーの項目を確認します。

手順 1:PC とルーターをケーブルで接続する

図 10.1のようにルーターと PC 間のケーブルを接続します。 RTA、RTB の設定がデフォルトであることを確実にするには reset saved-configuration コマ

ンドでデフォルトのコンフィギュレーションへ戻します。

<RTA>reset saved-configuration

The saved configuration file will be erased. Are you sure? [Y/N]:y

Configuration file in flash: is being cleared.

Please wait ...

Configuration file is cleared.

<RTA>reboot

Start to check configuration with next startup configuration file, please wait......DONE!

Current configuration may be lost after the reboot, save current configuration? [Y/N]:n Please input the file name(*.cfg)[flash:/startup.cfg]

(To leave the existing filename unchanged, press the enter key):y

....

手順2:ルーティングテーブルを表示します

RTA のルーティングテーブルを表示します。

<rta>display ip routing-table</rta>								
Destinations : 8 Routes : 8								
Destination/Mask	Proto	Pre	e Cost	NextHop	Interface			
0.0.0/32	Direct	0	0	127.0.0.1	InLoop0			
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0			
127.0.0.0/32	Direct	0	0	127.0.0.1	InLoop0			
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0			
127.255.255.255/32	Direct	0	0	127.0.0.1	InLoop0			
224.0.0.0/4	Direct	0	0	0.0.00	NULL0			
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0			
255.255.255.255/32	Direct	0	0	127.0.0.1	InLoop0			

この結果は、ルーターが8つのダイレクトルートを持ち、1つのループバックアドレス 127.0.0.0と1つの別のループバックアドレス 127.0.0.1を持っています。 表 10-1 IP アドレス割り当てスキーマ

装置	インターフェイス	IP アドレス	ゲートウェイ
DTA	S3/0	192.168.1.1/24	-
	G0/0	192.168.0.1/24	-
DTD	S3/0	192.168.1.2/24	-
RID	G0/0	192.168.2.1/24	-
PCA		192.168.0.2/24	192.168.0.1
PCB		192.168.2.2/24	192.168.2.1

スキーマ毎に IP アドレスを割り当てます。

RTA をコンフィギュレーションします。

[RTA]interface GigabitEthernet 0/0
[RTA-GigabitEthernet0/0]ip address 192.168.0.1 24
[RTA-GigabitEthernet0/0]quit
[RTA]interface Serial 3/0
[RTA-Serial3/0]ip address 192.168.1.1 24
[RTA-Serial3/0]quit

RTB をコンフィギュレーションします。

[RTB]interface GigabitEthernet 0/0 [RTB-GigabitEthernet0/0]ip address 192.168.2.1 24 [RTB-GigabitEthernet0/0]quit [RTB]interface Serial 3/0 [RTB-Serial3/0]ip address 192.168.1.2 24 [RTB-Serial3/0]quit

RTA のルーティングテーブルを表示します。

<rta>display ip routing-table</rta>								
Destinations : 17 Routes : 17								
Destination/Mask	Proto	Pre Cost		NextHop	Interface			
0.0.0/32	Direct	0	0	127.0.0.1	InLoop0			
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0			

127.0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	Direct	0	0	127.0.0.1	InLoop0
192.168.0.0/24	Direct	0	0	192.168.0.1	GE0/0
192.168.0.0/32	Direct	0	0	192.168.0.1	GE0/0
192.168.0.1/32	Direct	0	0	127.0.0.1	InLoop0
192.168.0.255/32	Direct	0	0	192.168.0.1	GE0/0
192.168.1.0/24	Direct	0	0	192.168.1.1	Ser3/0
192.168.1.0/32	Direct	0	0	192.168.1.1	Ser3/0
192.168.1.1/32	Direct	0	0	127.0.0.1	InLoop0
192.168.1.2/32	Direct	0	0	192.168.1.2	Ser3/0
192.168.1.255/32	Direct	0	0	192.168.1.1	Ser3/0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0

出力は、RTA に宛先 192.168.0.0/24、192.168.0.1/32、192.168.1.0/24、192.168.1.1/32、 および 192.168.1.2/32 への新しい直接ルートがあることを示しています。これらのルートのう ち 192.168.0.1/32、192.168.1.1/32、および 192.168.1.2/32 はサブネットルートです。直 接ルートは、リンク層プロトコルがアップすると検出されます。ポートのリンク層プロトコルがダ ウンすると、それに接続されている直接ルートは削除されます。

RTA の GigabitEthernet 0/0 を shut down します。

[RTA]interface GigabitEthernet 0/0
[RTA-GigabitEthernet0/0]shutdown
%Nov 5 17:56:32:962 2021 RTA IFNET/3/PHY_UPDOWN: Physical state on the interface GigabitEthernet0/0 changed to down.
%Nov 5 17:56:32:962 2021 RTA IFNET/5/LINK_UPDOWN: Line protocol state on the interface GigabitEthernet0/0 changed to down.
[RTA-GigabitEthernet0/0] quit

RTA の最新のルーティングテーブルを表示します。

	RTA	ldispla	av ip	routing	-table
I		1		· • • • · · · · · · · · · · · · · · · ·	

Destinations : 13	Ro	outes	: 13		
Destination/Mask	Proto	Pre Cost		NextHop	Interface
0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0

127.0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0
192.168.1.0/24	Direct	0	0	192.168.1.1	Ser3/0
192.168.1.0/32	Direct	0	0	192.168.1.1	Ser3/0
192.168.1.1/32	Direct	0	0	127.0.0.1	InLoop0
192.168.1.2/32	Direct	0	0	192.168.1.2	Ser3/0
192.168.1.255/32	Direct	0	0	192.168.1.1	Ser3/0
224.0.0.0/4	Direct	0	0	0.0.00	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0
				11 1-12 + 0	

GigabitEthernet 0/0 のリンク層プロトコルが disable になったのでこのポートに接続されてい るダイレクトルートが削除されます。

GigabitEthernet 0/0 を元に戻します。

[RTA]interface GigabitEthernet 0/0

[RTA-GigabitEthernet0/0]undo shutdown

[RTA-GigabitEthernet0/0]%Nov 5 17:57:15:834 2021 RTA IFNET/3/PHY_UPDOWN: Physical state on the interface GigabitEthernet0/0 changed to up.

%Nov 5 17:57:15:835 2021 RTA IFNET/5/LINK_UPDOWN: Line protocol state on the interface GigabitEthernet0/0 changed to up.

[RTA-GigabitEthernet0/0] quit

リンク層プロトコルがアップした後、GigabitEthernet 0/0 のダイレクトルートが追加されます。

タスク2:static route の設定をします

このタスクでは PC 間のコミュニケーションを可能にする static route の設定を行います。そして、 どのようにしてルーティングループが発生するかを説明します。

手順 1:PC の IP アドレスを設定する

表 10-1 に従って、PC の IP アドレスとゲートウェイを構成します。次に、WindowsOS から Start > Run をクリックし、テキストボックスに cmd と入力して、OK をクリックし、ipconfig コマン ドを使用して、構成された IP アドレスとゲートウェイが正しいことを確認します。

接続をテストするために各 PC のゲートウェイを使用します。 たとえば、PCA でゲートウェイ 192.168.0.1 に ping を実行します。

<PCA>ping 192.168.0.1

Ping 192.168.0.1 (192.168.0.1): 56 data bytes, press CTRL_C to break 56 bytes from 192.168.0.1: icmp_seq=0 ttl=255 time=1.000 ms 56 bytes from 192.168.0.1: icmp_seq=1 ttl=255 time=3.000 ms 56 bytes from 192.168.0.1: icmp_seq=2 ttl=255 time=2.000 ms 56 bytes from 192.168.0.1: icmp_seq=3 ttl=255 time=0.000 ms 56 bytes from 192.168.0.1: icmp_seq=4 ttl=255 time=2.000 ms

--- Ping statistics for 192.168.0.1 ---

5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss round-trip min/avg/max/std-dev = 0.000/1.600/3.000/1.020 ms

お互いの PC へ ping を行います。例えば、PCA から PCB へ ping します。 [RTA]ping 192.168.2.2 Ping 192.168.2.2 (192.168.2.2): 56 data bytes, press CTRL_C to break Request time out Request time out Request time out Request time out Request time out

```
出力は、宛先に到達できないことを示しています。 これは、RTA が 192.168.2.2 の PCB へのルートを持っていないためです。
```

```
RTA のルーティングテーブルを表示
```

[RTA]display ip routing-table

Destinations : 17	Ro	utes	: 17		
Destination/Mask	Proto	Pre	e Cost	NextHop	Interface
0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0
127.0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	Direct	0	0	127.0.0.1	InLoop0
192.168.0.0/24	Direct	0	0	192.168.0.1	GE0/0
192.168.0.0/32	Direct	0	0	192.168.0.1	GE0/0
192.168.0.1/32	Direct	0	0	127.0.0.1	InLoop0

192.168.0.255/32	Direct	0	0	192.168.0.1	GE0/0
192.168.1.0/24	Direct	0	0	192.168.1.1	Ser3/0
192.168.1.0/32	Direct	0	0	192.168.1.1	Ser3/0
192.168.1.1/32	Direct	0	0	127.0.0.1	InLoop0
192.168.1.2/32	Direct	0	0	192.168.1.2	Ser3/0
192.168.1.255/32	Direct	0	0	192.168.1.1	Ser3/0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0

出力は、RTA にサブネット 192.168.2.0/24 へのルートがないことを示しています。 この問題 を解決するために、各ルーターに静的ルートを構成できます。

手順 2: static route の計画を立てる

ネクストホップが2つのルーターで構成された静的ルートに含まれることを考慮してください。

手順 3: static route を設定する

RTA を設定する。

[RTA]ip route-static 192.168.2.0 24 192.168.1.2

RTB を設定する。

[RTB]ip route-static 192.168.0.0 24 192.168.1.1

RTA のルーティングテーブルを表示する [RTA]display ip routing-table Destinations: 18 Routes: 18

Proto	Pre	e Cost	NextHop	Interface
Direct	0	0	127.0.0.1	InLoop0
Direct	0	0	127.0.0.1	InLoop0
Direct	0	0	127.0.0.1	InLoop0
Direct	0	0	127.0.0.1	InLoop0
Direct	0	0	127.0.0.1	InLoop0
Direct	0	0	192.168.0.1	GE0/0
Direct	0	0	192.168.0.1	GE0/0
	Proto Direct Direct Direct Direct Direct Direct	ProtoPreDirect0Direct0Direct0Direct0Direct0Direct0Direct0Direct0	ProtoPre CostDirect00Direct00Direct00Direct00Direct00Direct00Direct00	Proto Pre Cost NextHop Direct 0 0 127.0.0.1 Direct 0 0 192.168.0.1

192.168.0.1/32	Direct	0	0	127.0.0.1	InLoop0
192.168.0.255/32	Direct	0	0	192.168.0.1	GE0/0
192.168.1.0/24	Direct	0	0	192.168.1.1	Ser3/0
192.168.1.0/32	Direct	0	0	192.168.1.1	Ser3/0
192.168.1.1/32	Direct	0	0	127.0.0.1	InLoop0
192.168.1.2/32	Direct	0	0	192.168.1.2	Ser3/0
192.168.1.255/32	Direct	0	0	192.168.1.1	Ser3/0
192.168.2.0/24	Static	60	0	192.168.1.2	Ser3/0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0

PC 間の接続性を確認する。例えば、PCA から PCB へ ping する。

```
<PCA>ping 192.168.2.2
```

Ping 192.168.2.2 (192.168.2.2): 56 data bytes, press CTRL_C to break 56 bytes from 192.168.2.2: icmp_seq=0 ttl=253 time=3.000 ms 56 bytes from 192.168.2.2: icmp_seq=1 ttl=253 time=5.000 ms 56 bytes from 192.168.2.2: icmp_seq=2 ttl=253 time=5.000 ms 56 bytes from 192.168.2.2: icmp_seq=3 ttl=253 time=5.000 ms 56 bytes from 192.168.2.2: icmp_seq=4 ttl=253 time=6.000 ms

PCA から PCB へ traceroute する(HCL では tracert コマンドは用意されていません) C:¥Users¥PCA>tracert 192.168.2.2 192.168.2.2 へのルートをトレースしています。経由するホップ数は最大 30 です

1	<1 ms	<1 ms	<1 ms	192.168.0.1
2	23 ms	23 ms	23 ms	192.168.1.2
3	28 ms	27 ms	28 ms	192.168.2.2

トレースを完了しました。

出力結果は PCA から PCB への経路が PCA -> RTA -> RTB -> PCB であることを示しています。

手順 4: ルーティングループを作成し、ルーターの転送動作を観

察します。

ルーティングループを作成するには、ネクストホップが RTA と RTB のそれぞれの他のルータ ーを指すようにデフォルトルートを構成します。 ルーターはシリアルポートを介して接続され ているためです。 ネクストホップはローカルシリアルポートとして設定されます。

RTA を設定します。

[RTA]ip route-static 0.0.0.0 0.0.0.0 s3/0

RTB を設定します。 [RTB]ip route-static 0.0.0.0 0.0.0.0 s3/0

それぞれのルーターのルーティングテーブルを表示します。例えば、RTA のルーティングテ ーブルを表示します。

[RTA]display ip routing-table

Destinations : 19 Routes : 19

Destination/Mask	Proto	Pr	e Cost	NextHop	Interface
0.0.0/0	Static	60	0	0.0.0.0	Ser3/0
0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0
127.0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0
192.168.0.0/24	Direct	0	0	192.168.0.1	GE0/0
192.168.0.0/32	Direct	0	0	192.168.0.1	GE0/0
192.168.0.1/32	Direct	0	0	127.0.0.1	InLoop0
192.168.0.255/32	Direct	0	0	192.168.0.1	GE0/0
192.168.1.0/24	Direct	0	0	192.168.1.1	Ser3/0
192.168.1.0/32	Direct	0	0	192.168.1.1	Ser3/0
192.168.1.1/32	Direct	0	0	127.0.0.1	InLoop0
192.168.1.2/32	Direct	0	0	192.168.1.2	Ser3/0
192.168.1.255/32	Direct	0	0	192.168.1.1	Ser3/0

192.168.2.0/24	Static	60	0	192.168.1.2	Ser3/0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	Direct	0	0	127.0.0.1	InLoop0

```
PCA から 3.3.3.3 へ Traceroute します(HCL では tracert コマンドは用意されていません)。
C:¥Users¥PCA>tracert 3.3.3.3
3.3.3.3 へのルートをトレースしています。経由するホップ数は最大 30 です
```

1	<1 ms	<1 ms	<1 ms	192.168.1.1
2	23 ms	23 ms	23 ms	192.168.1.2
3	27 ms	27 ms	27 ms	192.168.1.1
4	31 ms	31 ms	31 ms	192.168.1.2
5	56 ms	56 ms	56 ms	192.168.1.1
29	386 ms	387 ms	386 ms	192.168.1.1
30	409 ms	409 ms	409 ms	192.168.1.2

トレースを完了しました。

宛先 3.3.3.3 はデフォルトルートと一致するため、宛先 3.3.3.3 にアドレス指定されたパケット は RTB に送信されます。その後、RTA に送り返します。 ルーティングループが発生しま す。 パケットは、TTL が 0 に低下するまで、2 つのルーター間で継続的に送信されます。

したがって、同じ宛先にアドレス指定され、ネクストホップが2つの接続されたルーター上の 他のルーターを指す静的ルートを構成することはできません。 そうしないと、ルーティングル ープが発生します。

質問:

1. このラボで RTA に静的ルートのみを構成するとします。PCA から PCB へ送信されたパケットは PCB に到達できますか? PCB は PCA から ping できましたか?

答え:

PCA から PCB に送信されたパケットは PCB に到達できます。 RTA で設定された静的ルートは、パケットを RTB に転送します。次に、直接サブネットルートを介してパケットを PCB に送信します。

RTB には PCA へのルートがないため、PCA から PCB への ping 操作は成功せず、PCB からの ping 応答パケットは RTB によって破棄されます。

実際には、ほとんどのネットワークアプリケーションは双方向通信を必要とします。たとえば、HTTP、 FTP、および電子メールは、双方向接続を確立する TCP を採用しています。

2. PC とルーターの間でルーティングループが発生する可能性はありますか?

答え:

いいえ、できません。PC にはルーティング機能がないため、PC 宛てではない着信パケットが破棄されます。

VRRP の設定

実習内容と目標

このラボでは以下のことを学びます:

- VRRP の基本的なコンフィギュレーションを習得します。
- VRRPとOSPFを組み合わせたコンフィギュレーション方法を習得します。
- VRRPの障害時の切り替えの確認をします。

ネットワーク図

図 3.1 実習ネットワーク

上の図は、テストトポロジを示しています。2 つの MSR3620(RTA と RTB)と、2 つの S5820V2 (SW1 と SW2)、および 2 つの PC(PC、HostB)です。

PC から HostB への経路を冗長化するために VRRP を設定します。この場合、SWA から RTA, RTB 間が VRRP により冗長化され、仮想 IP アドレスへ 10.1.1.111 となります。

また、HostB から PC への経路を冗長化するために RTB の右側にも SWB からの経路を冗長化 するために VRRP を設定します。

RTAの VRRP のプライオリティを RTB より高くしていると図 3-2 のように仮想 IP は両方とも RTA に存在します。

図 3-2 RTA, RTB の両側に VRRP を構成

この場合、左側の VRRP で SWA から RTA への経路に障害が発生しても図 3-3 のように右側の 経路は SWB から RTA の経路のままです。

図 3-3 SWA, RTA 間に障害発生

したがって、PCからHostBへの通信は途切れてしまいます。 これを防ぐためにはRTAとRTBの間にルーティングプロトコルが必要となります。 今回はOSPFを使って、経路障害を検知して正しい経路を選択するようにします。 そうすると図 3-4 のように正しい迂回経路が選択されます。

図 3-4 OSPF により経路障害に対応

実習装置

本実験に必要な主な設備機材	<i>\`</i> ``¬` <i>\</i>	粉旱	杜司車百
実験装置名前とモデル番号	N-932	<u> </u>	付記争攻
MSR36-20	Version7.1	2	ルーター
S5820V2	Version7.1	2	スイッチ
PC	Windows 7	2	ホスト
ネットワークケーブルの接続		7	ストレートケーブル

実習手順

タスク1:それぞれの装置に IP アドレスを設定する

手順 1: 両 PC に IP アドレス、ゲートウェイアドレスを設定する

アドレスおよびデフォルトゲートウェイは表 3-1 に従って設定します。

装置	インターフェイス	IP アドレス	ゲートウェイ
	G0/0	10.1.1.1/24	-
RTA	G0/1	10.1.3.1/24	-
	G0/2	10.1.2.1/24	
	G0/0	10.1.1.2/24	-
RTB	G0/1	10.1.3.2/24	-
	G0/2	10.1.2.2/24	
SWA	VLAN 1	10.1.1.4/24	10.1.1.111
SWB	VLAN 1	10.1.3.3/24	10.1.3.111
PC		10.1.1.5/24	10.1.1.111
HostB		10.1.3.5/24	10.1.3.111

手順 2:SWA, SWB の STP を無効にする

SWA の stp を無効にします

[SWA]undo stp global enable

[SWA]%Dec 21 17:55:46:538 2021 SWA STP/6/STP_DISABLE: STP is now disabled on the device.

SWB の stp を無効にします

[SWB]undo stp global enable

[SWB]%Dec 21 17:55:46:538 2021 SWB STP/6/STP_DISABLE: STP is now disabled on the device.

手順 3:SWA, SWB に IP アドレス、デフォルトルートを設定する

PC、SWA 間、HostB、SWB 間にケーブルをつなぎます。そして、以下のように SWA,SWB に IP アドレスとデフォルトルートを設定します。 # SWA の VLAN 1 に IP アドレス 10.1.1.4/24 を割り当てます。 [SWA]interface Vlan-interface 1 [SWA-Vlan-interface1]ip address 10.1.1.4 24 # RTA, RTB の先にあるネットワークセグメントへのデフォルトゲートウェイ(仮想 IP アドレス)を設 定します。 [SWA]ip route-static 0.0.0.0 0.0.0.0 10.1.1.111

SWB の VLAN 1 に IP アドレス 10.1.3.3/24 を割り当てます。
[SWB]interface Vlan-interface 1
[SWB-Vlan-interface1]ip address 10.1.3.3 24
RTA, RTB の先にあるネットワークセグメントへのデフォルトゲートウェイ(仮想 IP アドレス)を設定します。
[SWB]ip route-static 0.0.00 0.0.00 10.1.3.111

手順 4:SWA と RTA 間、SWB と RTB 間にケーブルを接続し

RTA, RTB に IP アドレスを設定する

RTA に IP アドレスを割り当てます。 [RTA]interface GigabitEthernet 0/0 [RTA-GigabitEthernet0/0]ip address 10.1.1.1 24 [RTA-GigabitEthernet0/0]quit [RTA]interface GigabitEthernet 0/1 [RTA-GigabitEthernet0/1]ip address 10.1.3.1 24 [RTA-GigabitEthernet0/1]quit

RTB に IP アドレスを割り当てます。 [RTB]interface GigabitEthernet 0/0 [RTB-GigabitEthernet0/0]ip address 10.1.1.2 24 [RTB-GigabitEthernet0/0]quit [RTB]interface GigabitEthernet 0/1 [RTB-GigabitEthernet0/1]ip address 10.1.3.2 24 [RTB-GigabitEthernet0/1]quit

タスク2:RTA, RTB に VRRP を設定する

手順 1: RTA, RTB に VRRP を設定する

RTA の VRID 1 に仮想 IP 10.1.1.111 を設定し、VRID 2 に仮想 IP 10.1.3.111 を設定します。 RTA が両 VRID のマスターにするためにプライオリティを 110 に設定します。 [RTA]interface GigabitEthernet 0/0 [RTA-GigabitEthernet0/0]vrrp vrid 1 virtual-ip 10.1.1.111 [RTA-GigabitEthernet0/0]vrrp vrid 1 priority 110 [RTA-GigabitEthernet0/0]vrrp vrid 1 preempt-mode delay 500 [RTA-GigabitEthernet0/0]quit [RTA]interface GigabitEthernet 0/1 [RTA-GigabitEthernet0/1]vrrp vrid 2 virtual-ip 10.1.3.111 [RTA-GigabitEthernet0/1]vrrp vrid 2 priority 110 [RTA-GigabitEthernet0/1]vrrp vrid 2 preempt-mode delay 500 [RTA-GigabitEthernet0/1]quit

RTB の VRID 1 に仮想 IP 10.1.1.111 を設定し、VRID 2 に仮想 IP 10.1.3.111 を設定します。

[RTB]int GigabitEthernet 0/0

[RTB-GigabitEthernet0/0]vrrp vrid 1 virtual-ip 10.1.1.111

- [RTB-GigabitEthernet0/0]vrrp vrid 1 priority 100
- [RTB-GigabitEthernet0/0]vrrp vrid 1 preempt-mode delay 500
- [RTB-GigabitEthernet0/0]quit
- [RTB]int GigabitEthernet 0/1

[RTB-GigabitEthernet0/1]vrrp vrid 2 virtual-ip 10.1.3.111

- [RTB-GigabitEthernet0/1]vrrp vrid 2 priority 100
- [RTB-GigabitEthernet0/1]vrrp vrid 2 preempt-mode delay 500
- [RTB-GigabitEthernet0/1]quit

タスク3:RTA, RTB に OSPF を設定する

手順 1: RTA と RTB 間にケーブルを接続し RTA, RTB に IP ア

ドレスを設定する

RTA に IP アドレスを割り当てます。

[RTA] interface GigabitEthernet 0/2

[RTA-GigabitEthernet0/2]ip address 10.1.2.1 24

[RTA-GigabitEthernet0/2]quit

#RTB に IP アドレスを割り当てます。 [RTB] interface GigabitEthernet 0/2 [RTB-GigabitEthernet0/2]ip address 10.1.2.2 24 [RTB-GigabitEthernet0/2]quit

手順 2: RTA, RTB に OSPF を設定する

RTA に OSPF を設定します

[RTA]router id 1.1.1.1

[RTA]ospf 1

[RTA-ospf-1]area 0

[RTA-ospf-1-area-0.0.0.0]network 10.1.1.0 0.0.0.255

[RTA-ospf-1-area-0.0.0.0]network 10.1.2.0 0.0.0.255

[RTA-ospf-1-area-0.0.0.0]network 10.1.3.0 0.0.0.255

[RTA-ospf-1-area-0.0.0.0]quit

[RTA-ospf-1]quit

RTB に OSPF を設定します

[RTB]router id 2.2.2.2

[RTB]ospf 1

[RTB-ospf-1]area 0

[RTB-ospf-1-area-0.0.0.0]network 10.1.1.0 0.0.0.255

[RTB-ospf-1-area-0.0.0.0]network 10.1.2.0 0.0.0.255

[RTB-ospf-1-area-0.0.0.0]network 10.1.3.0 0.0.0.255

[RTB-ospf-1-area-0.0.0.0]quit

[RTB-ospf-1]quit

タスク4:OSPFの状態を確認する

RTA の OSPF の状態を確認します。

<RTA>dis ospf peer

OSPF Process 1 with Router ID 1.1.1.1

Neighbor Brief Information

Area: 0.0.0.0

Router ID	Address	Pr	i Dead-Time	State	Interface
2.2.2.2	10.1.1.2	1	38	Full/DR	GE0/0
2.2.2.2	10.1.3.2	1	40	Full/DR	GE0/1
2.2.2.2	10.1.2.2	1	39	Full/DR	GE0/2

RTB の OSPF の状態を確認します。

<RTB>display ospf peer

OSPF Process 1 with Router ID 2.2.2.2

Neighbor Brief Information

Area: 0.0.0.0					
Router ID	Address	Р	ri Deac	I-Time State	Interface
1.1.1.1	10.1.1.1	1	38	Full/BDR	GE0/0
1.1.1.1	10.1.3.1	1	39	Full/BDR	GE0/1
1.1.1.1	10.1.2.1	1	31	Full/BDR	GE0/2

#RTAのルーティングテーブルを表示します。

ここで分かるように VRID 1 の仮想 IP 10.1.1.111、VRID 2 の仮想 IP 10.1.3.111 の

マスターが RTA にあることが分かります(RTB のルーティングテーブルと比較してみてください)。

<RTA>dis ip routing-table

Destinations : 18	Ro	utes	: 18		
Destination/Mask	Proto	Pr	e Cost	NextHop	Interface
0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
10.1.1.0/24	Direct	0	0	10.1.1.1	GE0/0
10.1.1.1/32	Direct	0	0	127.0.0.1	InLoop0
10.1.1.111/32	Direct	1	0	127.0.0.1	InLoop0
10.1.1.255/32	Direct	0	0	10.1.1.1	GE0/0
10.1.2.0/24	Direct	0	0	10.1.2.1	GE0/2
10.1.2.1/32	Direct	0	0	127.0.0.1	InLoop0
10.1.2.255/32	Direct	0	0	10.1.2.1	GE0/2
10.1.3.0/24	Direct	0	0	10.1.3.1	GE0/1
10.1.3.1/32	Direct	0	0	127.0.0.1	InLoop0
10.1.3.111/32	Direct	1	0	127.0.0.1	InLoop0
10.1.3.255/32	Direct	0	0	10.1.3.1	GE0/1
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/3	2 Direct	0	0	127.0.0.1	InLoop0

#RTBのルーティングテーブルを表示します。

<rtb>display ip routing-table</rtb>								
Destinations : 16	Ro	utes : 16						
Destination/Mask	Proto	Pre Cost	NextHop					

Interface

0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
10.1.1.0/24	Direct	0	0	10.1.1.2	GE0/0
10.1.1.2/32	Direct	0	0	127.0.0.1	InLoop0
10.1.1.255/32	Direct	0	0	10.1.1.2	GE0/0
10.1.2.0/24	Direct	0	0	10.1.2.2	GE0/2
10.1.2.2/32	Direct	0	0	127.0.0.1	InLoop0
10.1.2.255/32	Direct	0	0	10.1.2.2	GE0/2
10.1.3.0/24	Direct	0	0	10.1.3.2	GE0/1
10.1.3.2/32	Direct	0	0	127.0.0.1	InLoop0
10.1.3.255/32	Direct	0	0	10.1.3.2	GE0/1
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	Direct	0	0	127.0.0.1	InLoop0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	Direct	0	0	127.0.0.1	InLoop0

タスク5: VRRPの状態を確認する

RTA の VRRP の状態を確認します。

先ほどの RTA のルーティングテーブルで RTA が仮想 IP のマスターであることが分かり

ましたが、ここでもそれが裏付けられました。

<RTA>display vrrp

IPv4 Virtual Router Information:

Running mode : Standard

Total number of virtual routers : 2

Interface	VRID	State	Running Adver		Auth	Virtual
			Pri	Timer	Туре	IP
GE0/0		1	Master	110	100	Not supported
10.1.1.111 GE0/1		2	Master	110	100	Not supported
10.1.3.111				-		

RTB の VRRP の状態を確認します。

<RTB>display vrrp

IPv4 Virtual Router Information:

Running mode	: Sta	ndard				
Total number of v	rirtual rou	ters : 2				
Interface	VRID	State	Running Adver		Auth	Virtual
			Pri	Timer	Туре	IP
GE0/0		1	Backup	100	100	Not supported
10.1.1.111						
GE0/1		2	Backup	100	100	Not supported
10.1.3.111						

タスク6:PCとHostB間の疎通確認をします

PC から HostB へ ping します。

<PC>ping 10.1.3.5

Ping 10.1.3.5 (10.1.3.5): 56 data bytes, press CTRL_C to break 56 bytes from 10.1.3.5: icmp_seq=0 ttl=254 time=3.000 ms 56 bytes from 10.1.3.5: icmp_seq=1 ttl=254 time=5.000 ms 56 bytes from 10.1.3.5: icmp_seq=2 ttl=254 time=7.000 ms 56 bytes from 10.1.3.5: icmp_seq=3 ttl=254 time=4.000 ms 56 bytes from 10.1.3.5: icmp_seq=4 ttl=254 time=7.000 ms

```
# HostB から PC へ ping します。
<HostB>ping 10.1.1.5
Ping 10.1.1.5 (10.1.1.5): 56 data bytes, press CTRL_C to break
```

56 bytes from 10.1.1.5: icmp_seq=0 ttl=254 time=3.000 ms 56 bytes from 10.1.1.5: icmp_seq=1 ttl=254 time=7.000 ms 56 bytes from 10.1.1.5: icmp_seq=2 ttl=254 time=7.000 ms 56 bytes from 10.1.1.5: icmp_seq=3 ttl=254 time=7.000 ms 56 bytes from 10.1.1.5: icmp_seq=4 ttl=254 time=7.000 ms

タスク7: VRID 1 のマスターに接続されている SWA のポートを

shutdown して切り替えの状態を確認します。

手順 1:PC から HostB へ ping を続けます

手順 2:SWA の G1/0/2 を shutdown する

SWA の G1/0/2 を shutdown します。

[SWA]interface GigabitEthernet 1/0/2

[SWA-GigabitEthernet1/0/2]shutdown

[SWA-GigabitEthernet1/0/2]%Dec 21 16:38:04:456 2021 SWA IFNET/3/PHY_UPDOWN: Physical state on the interface GigabitEthernet1/0/2 changed to down.

%Dec 21 16:38:04:456 2021 SWA IFNET/5/LINK_UPDOWN: Line protocol state on the interface GigabitEthernet1/0/2 changed to down.

手順 3: PC から HostB への ping の状態を確認します

手順 1 で G1/0/2 を shutdown した直後に 2 つパケットが欠落しましたが、すぐに VRRP と OSPF により代替ルートが用意されました。 <PC>ping -c 5000 10.1.3.5 Ping 10.1.3.5 (10.1.3.5): 56 data bytes, press CTRL_C to break 56 bytes from 10.1.3.5: icmp_seq=0 ttl=254 time=3.000 ms 56 bytes from 10.1.3.5: icmp_seq=1 ttl=254 time=8.000 ms 56 bytes from 10.1.3.5: icmp_seq=2 ttl=254 time=7.000 ms 56 bytes from 10.1.3.5: icmp_seq=3 ttl=254 time=7.000 ms 56 bytes from 10.1.3.5: icmp_seq=5 ttl=254 time=7.000 ms 56 bytes from 10.1.3.5: icmp_seq=67 ttl=254 time=7.000 ms 56 bytes from 10.1.3.5: icmp_seq=69 ttl=254 time=7.000 ms 56 bytes from 10.1.3.5: icmp_seq=68 ttl=254 time=7.000 ms 56 bytes from 10.1.3.5: icmp_seq=69 ttl=254 time=7.000 ms

Request time out

56 bytes from 10.1.3.5: icmp_seq=72 ttl=253 time=8.000 ms 56 bytes from 10.1.3.5: icmp_seq=73 ttl=253 time=7.000 ms 56 bytes from 10.1.3.5: icmp_seq=74 ttl=253 time=7.000 ms 56 bytes from 10.1.3.5: icmp_seq=72 ttl=253 time=8.000 ms 56 bytes from 10.1.3.5: icmp_seq=73 ttl=253 time=7.000 ms 56 bytes from 10.1.3.5: icmp_seq=74 ttl=253 time=7.000 ms

手順 4: RTA, RTB のルーティングテーブルを表示します

RTA のルーティングテーブルを表示します。RTA のルーティングテーブルから分かることは、仮 想 IP 10.1.1.111 は RTB に移りましたが、仮想 IP 10.1.3.111 は相変わらず RTA にあります。そ のため OSPF は経路障害後に RTB に到着した 10.1.3.0 宛のパケットを RTA に転送するルート を構築しました(VRRP により RTB から SWB の経路は閉じていることを思い出してください)。

<RTA>dis ip routing-table

Destinations : 15	Routes	s : 16		
Destination/Mask	Proto P	re Cost	NextHop	Interface
0.0.0/32	Direct 0	0	127.0.0.1	InLoop0
10.1.1.0/24	O_INTRA	10 2	10.1.2.2	GE0/2
	O_INTRA	10 2	10.1.3.2	GE0/1
10.1.2.0/24	Direct 0	0	10.1.2.1	GE0/2
10.1.2.1/32	Direct 0	0	127.0.0.1	InLoop0
10.1.2.255/32	Direct 0	0	10.1.2.1	GE0/2
10.1.3.0/24	Direct 0	0	10.1.3.1	GE0/1
10.1.3.1/32	Direct 0	0	127.0.0.1	InLoop0

10.1.3.111/32	Direct	1	0	127.0.0.1	InLoop0
10.1.3.255/32	Direct	0	0	10.1.3.1	GE0/1
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0

RTB のルーティングテーブルを表示します

<RTB>display ip routing-table

Destinations : 17	Ro	utes	: 17		
Destination/Mask	Proto	Pro	e Cost	NextHop	Interface
0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
10.1.1.0/24	Direct	0	0	10.1.1.2	GE0/0
10.1.1.2/32	Direct	0	0	127.0.0.1	InLoop0
10.1.1.111/32	Direct	1	0	127.0.0.1	InLoop0
10.1.1.255/32	Direct	0	0	10.1.1.2	GE0/0
10.1.2.0/24	Direct	0	0	10.1.2.2	GE0/2
10.1.2.2/32	Direct	0	0	127.0.0.1	InLoop0
10.1.2.255/32	Direct	0	0	10.1.2.2	GE0/2
10.1.3.0/24	Direct	0	0	10.1.3.2	GE0/1
10.1.3.2/32	Direct	0	0	127.0.0.1	InLoop0
10.1.3.255/32	Direct	0	0	10.1.3.2	GE0/1
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0

手順 5: RTA, RTB の vrrp の状態を表示します

RTA の vrrp の状態を表示します。 <RTA>display vrrp IPv4 Virtual Router Information: Running mode : Standard

Total number of v	rirtual rou	uters : 2				
Interface	VRID	State	Rur	ning Adv	ver Auth	Virtual
			Pri	Tin	ner Type	IP
GE0/0	1	Initialize	110	100	Not supported	10.1.1.111
GE0/1	2	Master	110	100	Not supported	10.1.3.111
# RTB の vrrp の状	態を表示	します。				
<rtb>display vrrp</rtb>)					
IPv4 Virtual Route	r Informa	ition:				
Running mode	: Sta	Indard				
Total number of v	rirtual rou	uters : 2				
Interface	VRID	State	Run	ning Adv	ver Auth	Virtual
			Pri	Tin	ner Type	IP
GE0/0	1	Master	100	100	Not supported	10.1.1.111
GE0/1	2	Backup	100	100	Not supported	10.1.3.111

タスク8: VRID 2 のマスターに接続されている SWA のポートを

shutdown して切り替えの状態を確認します。

手順 1:SWA の G1/0/2 を undo shutdown する

手順 2: PC から HostB へ ping を続けます

手順 3:SWA の G1/0/3 を shutdown する

SWA の G1/0/3 を shutdown します。

[SWA]interface GigabitEthernet 1/0/3

[SWA-GigabitEthernet1/0/3]shutdown

[SWA-GigabitEthernet1/0/3]%Dec 21 16:38:04:456 2021 SWA IFNET/3/PHY_UPDOWN:

Physical state on the interface GigabitEthernet1/0/3 changed to down.

%Dec 21 16:38:04:456 2021 SWA IFNET/5/LINK_UPDOWN: Line protocol state on the interface GigabitEthernet1/0/3 changed to down.

手順 4: PC から HostB へ ping の ping の状態を確認します

手順2でG1/0/2をshutdown しましたが、すぐに VRRPとOSPF により代替ルートが用意され

パケットの欠落はみられませんでした。

<PC>ping -c 5000 10.1.3.5

Ping 10.1.3.5 (10.1.3.5): 56 data bytes, press CTRL_C to break 56 bytes from 10.1.3.5: icmp_seq=0 ttl=254 time=3.000 ms 56 bytes from 10.1.3.5: icmp_seq=1 ttl=254 time=8.000 ms 56 bytes from 10.1.3.5: icmp_seq=2 ttl=254 time=8.000 ms 56 bytes from 10.1.3.5: icmp_seq=0 ttl=254 time=3.000 ms 56 bytes from 10.1.3.5: icmp_seq=1 ttl=254 time=8.000 ms 56 bytes from 10.1.3.5: icmp_seq=2 ttl=254 time=8.000 ms

手順 5:RTA, RTB のルーティングテーブルを表示します

RTA のルーティングテーブルを表示します

ここで分かるように VRID 1 の仮想 IP 10.1.1.111、VRID 2 の仮想 IP 10.1.3.111 の

マスターが RTA に戻ったことが分かります(RTB のルーティングテーブルと

比較してみてください)。

<RTA>dis ip routing-table

Destinations : 18	RO	utes	: 18		
Destination/Mask	Proto	Pre Cost		NextHop	Interface
0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
10.1.1.0/24	Direct	0	0	10.1.1.1	GE0/0
10.1.1.1/32	Direct	0	0	127.0.0.1	InLoop0
10.1.1.111/32	Direct	1	0	127.0.0.1	InLoop0
10.1.1.255/32	Direct	0	0	10.1.1.1	GE0/0

10.1.2.0/24	Direct	0	0	10.1.2.1	GE0/2
10.1.2.1/32	Direct	0	0	127.0.0.1	InLoop0
10.1.2.255/32	Direct	0	0	10.1.2.1	GE0/2
10.1.3.0/24	Direct	0	0	10.1.3.1	GE0/1
10.1.3.1/32	Direct	0	0	127.0.0.1	InLoop0
10.1.3.111/32	Direct	1	0	127.0.0.1	InLoop0
10.1.3.255/32	Direct	0	0	10.1.3.1	GE0/1
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0

RTB のルーティングテーブルを表示します

<rtb>display ip routing-table</rtb>					
Destinations : 14	Ro	utes	: 15		
Destination/Mask	Proto	Pr	e Cost	NextHop	Interface
0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
10.1.1.0/24	O_INTI	RA 1	0 2	10.1.2.1	GE0/2
	O_IN1	ΓRΑ	10 2	10.1.3.1	GE0/1
10.1.2.0/24	Direct	0	0	10.1.2.2	GE0/2
10.1.2.2/32	Direct	0	0	127.0.0.1	InLoop0
10.1.2.255/32	Direct	0	0	10.1.2.2	GE0/2
10.1.3.0/24	Direct	0	0	10.1.3.2	GE0/1
10.1.3.2/32	Direct	0	0	127.0.0.1	InLoop0
10.1.3.255/32	Direct	0	0	10.1.3.2	GE0/1
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/3	2 Direct	0	0	127.0.0.1	InLoop0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/3	2 Direct	0	0	127.0.0.1	InLoop0

手順 6: RTA, RTB の vrrp の状態を表示します

RTA の vrrp の状態を表示します。

<rta>display</rta>	vrrp						
IPv4 Virtual Ro	outer Inf	ormation:					
Running mod	le	: Standard					
Total number	r of virtua	al routers : 2					
Interface	V	RID State		Running	Adver	Auth	Virtual
				Pri	Timer	Туре	IP
GE0/0	1	Master	110	100	No	t supported	10.1.1.111
GE0/1	2	Master	110	100	No	t supported	10.1.3.111
# RTB の vrrp	の状態を	表示します。					
<rtb>dis vrrp</rtb>)						
IPv4 Virtual Ro	outer Inf	ormation:					
Running mod	le	: Standard					
Total number	r of virtua	al routers : 2					
Interface	٧	RID State		Running	Adver	Auth	Virtual
				Pri	Timer	Туре	IP
GE0/0	1	Initialize	100	100	Not	supported	10.1.1.111
GE0/1	2	Backup	100	100	Not	supported	10.1.3.111

NAT の設定

実習内容と目標

このラボでは以下のことを学びます:

- NAT の基本的なコンフィギュレーションを習得します。
- NAPT のコンフィギュレーション方法を習得します。
- Easy IP のコンフィギュレーション方法を習得します。
- NAT Server のコンフィギュレーション方法を習得します。

private	public		
10.0.0.1/24			
Client_A GE_0/1			
GE_0/2	198.76.28.1/24 1	198.76.29.1/24	
GE_0/0	GE_0/0 GE_0/1	GE_0/1 GE_0/1	٭Ç̂≁
SW1 10.0.0.254/24 GE_0/3	RTA 198.76.28.2/24		SW2 GE_0/2
GE_0/1			GE_0/1
Client_B		198.76.29.4/24	

ネットワーク図

図 14.1 実習ネットワーク

上の図は、テストトポロジを示しています。2 つの MSR3620(RTA と RTB)、2 つの S5820V2 (SW1 と SW2)、および 3 つの PC(Client_A、Client_B と Server)です。

Client_A と Client_B はプライベートネットワーク上にあり、RTA はゲートウェイと NAT デバイスと して機能し、1 つのプライベートネットワークポート(G0/0)と 1 つのパブリックネットワークを持ち、 RTB がゲートウェイとして機能します。

トポロジには、いくつかの NAT アプリケーションが含まれます。 Easy IP は最も単純で、主にダイ ヤルアップアクセスシナリオで使用されます。 基本的な NAT は NAPT ほど使われておりません。 NAPT は、パブリックネットワーク IP アドレスの使用を改善でき、パブリックサーバーシナリオへの プライベートクライアントアクセスに適用できます。 NAT サーバーは、プライベートサービスからパ ブリックネットワークへのシナリオに適用できます。

実習装置

本実験に必要な主な設備機材 実験装置名前とモデル番号	バージョン	数量	特記事項
MSR36-20	Version7.1	2	ルーター
S5820V2	Version7.1	2	スイッチ
PC	Windows 7	3	ホスト
ネットワークケーブルの接続		6	ストレートケーブル

実習手順

タスク1:基本的なNATの設定をする

このテストでは、プライベートネットワーククライアントの Client_A と Client_B がパブリックネットワ ークサーバーにアクセスする必要があります。 RTB はプライベートネットワークルートを格納しな いため、RTA で基本的な NAT を構成して、パブリックネットワークアドレスを Client_A と Client_B に動的に割り当てます。

手順1:テスト環境を構築する

ラボの図に従ってテスト環境を構築し、RTA および RTB ポートに IP アドレスを構成します。 サー バー宛てのパケットをルーティングするには、ネクストホップ RTB G0/0 を使用して、RTB を指すよ うに RTA で静的ルートを構成します。 RTA はサーバーに ping を実行できます。 Client_A の IP アドレスを 10.0.0.1/24 として、ゲートウェイを 10.0.0.254 として構成します。 Client_B IP アドレ スを 10.0.0.2/24 として構成し、ゲートウェイを 10.0.0.254 として構成します。

装置	インターフェイス	IP アドレス	ゲートウェイ
RTA	G0/0	10.0.0.254/24	-
	G0/1	198.76.28.1/24	-
RTB	G0/0	198.76.28.2/24	-
	G0/1	198.76.29.1/24	-

表 14-1 IP アドレス割り当てスキーマ

Client A	10.0.0.1	10.0.0.254
Client B	10.0.0.2	10.0.0.254
Server	198.76.29.4/24	198.76.29.1/24

手順2:基本的なコンフィギュレーション

IP アドレスとルートを設定します(RTB では、あえて RTA への static route を設定しません)。

[RTA]interface GigabitEthernet 0/0

[RTA-GigabitEthernet0/0]ip address 10.0.0.254 24

[RTA-GigabitEthernet0/0]quit

[RTA]interface GigabitEthernet 0/1

[RTA-GigabitEthernet0/1]ip address 198.76.28.1 24

[RTA-GigabitEthernet0/1]quit

[RTA]ip route-static 0.0.0.0 0 198.76.28.2

[RTB]interface GigabitEthernet 0/0 [RTB-GigabitEthernet0/0]ip address 198.76.28.2 24 [RTB-GigabitEthernet0/0]quit [RTB]interface GigabitEthernet 0/1 [RTB-GigabitEthernet0/1]ip address 198.76.29.1 24 [RTB-GigabitEthernet0/1]quit

手順 3: 接続性をチェックします

Client_A と Client_B でそれぞれサーバー(IP アドレス 198.76.29.4)に ping を実行します。出 力情報は次のとおりです。 <Client_A>ping 198.76.29.4 Ping 198.76.29.4 (198.76.29.4): 56 data bytes, press CTRL_C to break Request time out U前の情報に基づいて、Client_A と Client_B はサーバーに ping を実行できません。 RTB には プライベートネットワークへのルートがないためです。 RTB は、サーバーから送信された ping パ

ケットのネットワークセグメント 10.0.0.0 宛てのルートを見つけることができません。

手順 4: Basic NAT を設定します

RTA で Basic NAT を設定します。

ACL を使用して、ネットワークセグメント 10.0.0.0/24 にある送信元アドレスでフローを定義します。

[RTA]acl basic 2000

[RTA-acl-ipv4-basic-2000]rule 0 permit source 10.0.0.0 0.0.0.255

[RTA-acl-ipv4-basic-2000]quit

アドレス変換のためのアドレスとして 198.76.28.11 から 198.76.28.20 を用意した NAT アドレ

スプール 1 を作成します。

[RTA]nat address-group 1

[RTA-address-group-1]address 198.76.28.11 198.76.28.20

[RTA-address-group-1]quit

インターフェースビューに入り、ACL 2000 と NAT アドレスプール 1 を結び付けて outbound ポ ート経由でアドレスを割り当てます。

[RTA]interface GigabitEthernet 0/1

[RTA-GigabitEthernet0/1]nat outbound 2000 address-group 1 no-pat

[RTA-GigabitEthernet0/1]quit

パブリックネットワークアドレスプールのアドレスグループ1は、RTA で構成され、アドレス範囲は 198.76.28.11-198.76.28.20です。パラメータ no-patは、1対1のアドレス変換を示します。これ は、ポート番号ではなく、アドレス指定されたアドレスを変換することを意味します。この場合、 RTA は、ACL2000 ルールを変更するアウトバウンドパケットのアドレスを変換します。

手順 5: 接続性をチェックします

Client_A と Client_B でそれぞれサーバー(IP アドレス 198.76.29.4)に ping を実行します。出 力情報は次のとおりです。

<H3C>ping 198.76.29.4

Ping 198.76.29.4 (198.76.29.4): 56 data bytes, press CTRL_C to break

56 bytes from 198.76.29.4: icmp_seq=0 ttl=253 time=4.000 ms

56 bytes from 198.76.29.4: icmp_seq=1 ttl=253 time=9.000 ms

56 bytes from 198.76.29.4: icmp_seq=2 ttl=253 time=9.000 ms

56 bytes from 198.76.29.4: icmp_seq=3 ttl=253 time=8.000 ms

56 bytes from 198.76.29.4: icmp_seq=4 ttl=253 time=8.000 ms

手順 6:NAT エントリーをチェックします

RTA で NAT エントリーをチェックします。

[RTA]display nat session Slot 0:

Initiator:

Source IP/port: 10.0.0.1/172 Destination IP/port: 198.76.29.4/2048 DS-Lite tunnel peer: -VPN instance/VLAN ID/Inline ID: -/-/-Protocol: ICMP(1) Inbound interface: GigabitEthernet0/0 Initiator: Source IP/port: 10.0.0.1/171 Destination IP/port: 198.76.29.4/2048 DS-Lite tunnel peer: -VPN instance/VLAN ID/Inline ID: -/-/-Protocol: ICMP(1)

Inbound interface: GigabitEthernet0/0

Total sessions found: 2

[RTA]display nat no-pat Slot 0: Total entries found: 0 [RTA]display nat no-pat Slot 0: Local IP: 10.0.0.1 Global IP: 198.76.28.17 Reversible: N Type : Outbound

Local IP: 10.0.0.2 Global IP: 198.76.28.16 Reversible: N Type : Outbound

Total entries found: 2 以前の情報に基づいて、この ICMP パケットの送信元アドレス 10.0.0.1 は、送信元ポート番号 249 および宛先ポート番号 2048 のパブリックネットワークアドレス 192.76.28.12 に変換されまし た。送信元アドレス 10.0.0.2 は、パブリックネットワークアドレス 198.76.28.11、送信元ポート番号 210、宛先ポート番号 2048。1 分後に全体を確認します。 最後のネットワークエントリは失わ れます。 4 分後、すべてのエントリーが失われます。 出力情報は次のとおりです。

[RTA]display nat session

Slot 0:

Total sessions found: 0

NAT エントリーにはエージングタイム(エージングタイム)があります。 エージング時間が経過す ると、NAT は対応するエントリーを削除します。 Display session aging-time state コマンドを実行 して、セッションのデフォルトのエージングタイムを照会します。

[RTA]display session aging-time state

SESSION is not configured.

HCL のルーターではデフォルトのエージングタイムが設定されていないようなので、セッションの 状態を確認します。

[RTA]display session statistics

Slot 0:

Current sessions: 4

TCP sessions:	0
UDP sessions:	0
ICMP sessions:	4
ICMPv6 sessions:	0
UDP-Lite sessions:	0
SCTP sessions:	0
DCCP sessions:	0
RAWIP sessions:	0

History average sessions per second:

Past hour: 0

Past 24 hours: 0

Past 30 days: 0

History average session establishment rate:

Past hour: 0/s

Past 24 hours: 0/s

Past 30 days: 0/s

Current relation-table entries: 0

Session establishment rate: 0/s

TCP:	0/s
UDP:	0/s
ICMP:	0/s
ICMPv6:	0/s
UDP-Lite:	0/s
SCTP:	0/s
DCCP:	0/s
RAWIP:	0/s

Received TCP	:	0 packets	0 bytes
Received UDP	:	0 packets	0 bytes
Received ICMP	:	0 packets	0 bytes
Received ICMPv6	:	0 packets	0 bytes
Received UDP-Lite :		0 packets	0 bytes
Received SCTP	:	0 packets	0 bytes
Received DCCP	:	0 packets	0 bytes
Received RAWIP	:	0 packets	0 bytes

session aging-time コマンドを使って NAT セッションのエージングタイムを変更してみます。 NAT でバッキング情報は以下の通りです:

<RTA>terminal monitor

The current terminal is enabled to display logs.

<RTA>terminal debugging

The current terminal is enabled to display debugging logs.

<RTA>debugging nat packet

<RTA>*Nov 22 12:09:21:244 2021 RTA NAT/7/COMMON:

PACKET: (GigabitEthernet0/1-out) Protocol: ICMP

10.0.0.2: 0 - 198.76.29.4: 0(VPN: 0) ----->

198.76.28.12: 0 - 198.76.29.4: 0(VPN: 0)

*Nov 22 12:09:21:247 2021 RTA NAT/7/COMMON:

PACKET: (GigabitEthernet0/1-in) Protocol: ICMP

198.76.29.4: 0 - 198.76.28.12: 0(VPN: 0) ----->

198.76.29.4: 0 - 10.0.0.2: 0(VPN: 0)

以上のデバッキング情報によると、GigabitEthernet G0/1 の出力で、ICMP 10.0.0.2 の発信元ア

ドレスのパケットは 198.76.28.12 に変換されていることが分かります。

ノート:

理論的には、各 IP アドレスには 65,536 個のポートがあります。 占有ポートと予約ポートを除い て、使用可能なポートは理論値よりはるかに少なくなります。

手順 7:コンフィギュレーションを元に戻します

RTA の Basic NAT 設定を削除します。

- # NAT アドレスプールを削除します。
- [RTA]undo nat address-group 1
- # ポートに関連付けられた NAT を削除します。
- [RTA]interface GigabitEthernet 0/1
- [RTA-GigabitEthernet0/1]undo nat outbound 2000
- [RTA-GigabitEthernet0/1]quit

タスク2:NAPT の設定をする

プライベートネットワーククライアント client_A と Client_B は、パブリックネットワークサーバーにア クセスする必要があります。 パブリックネットワークアドレスが制限されているため、RTA で構成 されているパブリックネットワークアドレスの範囲は 198.76.28.11-198.76.28.20 です。 RTA で NAPT を構成して、パブリックネットワークアドレスとポートを Client_A と Client_B に動的に割り 当てます。

手順 1:テスト環境を構築する

テスト環境を構築します。タスク1のステップ1と2を参照してください。

手順 2: 接続性をチェックします

Client_A と Client_B でそれぞれサーバー(IP アドレス 198.76.29.4)に ping を実行します。出 力情報は次のとおりです。

<Client_A>ping 198.76.29.4

Ping 198.76.29.4 (198.76.29.4): 56 data bytes, press CTRL_C to break

Request time out

以前の情報に基づいて、Client_AとClient_Bはサーバーに pingを実行できません。

手順 3:NAPT を設定します

ACL を使用して、ネットワークセグメント 10.0.0.0/24 にある送信元アドレスでフローを定義します。

[RTA]acl basic 2000
[RTA-acl-ipv4-basic-2000]rule 0 permit source 10.0.0.0 0.0.0255
[RTA-acl-ipv4-basic-2000]quit
NAT アドレスプール 1 を 1 つのアドレス 198.76.28.11 で構成します。
[RTA]nat address-group 1
[RTA-address-group-1]address 198.76.28.11 198.76.28.11
[RTA-address-group-1]quit
インターフェースビューで NAT アドレスを acl 2000 にバインドし、アドレスを提供します。
[RTA]interface GigabitEthernet 0/1
[RTA-GigabitEthernet0/1]nat outbound 2000 address-group 1
[RTA-GigabitEthernet0/1]quit
パラメータ no-pat は伝送されず、NAT がパケット内のポートを変換することを示します。

手順 4: 接続性をチェックします

Client_A と Client_B でそれぞれサーバー(IP アドレス 198.76.29.4)に ping を実行します。出 力情報は次のとおりです。 <Client_A>ping 198.76.29.4 Ping 198.76.29.4 (198.76.29.4): 56 data bytes, press CTRL_C to break 56 bytes from 198.76.29.4: icmp_seq=0 ttl=253 time=5.000 ms 56 bytes from 198.76.29.4: icmp_seq=1 ttl=253 time=9.000 ms 56 bytes from 198.76.29.4: icmp_seq=2 ttl=253 time=8.000 ms 56 bytes from 198.76.29.4: icmp_seq=3 ttl=253 time=8.000 ms 56 bytes from 198.76.29.4: icmp_seq=3 ttl=253 time=8.000 ms

手順 5:NAT エントリーをチェックします

RTA の nat エントリーをチェックします。 [RTA]display nat session verbose Slot 0: Initiator: Source IP/port: 10.0.0.1/191 Destination IP/port: 198.76.29.4/2048

DS-Lite tunnel peer: -VPN instance/VLAN ID/Inline ID: -/-/-Protocol: ICMP(1) Inbound interface: GigabitEthernet0/0 Responder: Source IP/port: 198.76.29.4/3 Destination IP/port: 198.76.28.11/0 DS-Lite tunnel peer: -VPN instance/VLAN ID/Inline ID: -/-/-Protocol: ICMP(1) Inbound interface: GigabitEthernet0/1 State: ICMP_REPLY **Application: OTHER** Role: -Failover group ID: -Start time: 2021-11-22 14:55:05 TTL: 22s Initiator->Responder: 0 bytes 0 packets Responder->Initiator: 0 packets 0 bytes Initiator: Source IP/port: 10.0.0.2/227 Destination IP/port: 198.76.29.4/2048 DS-Lite tunnel peer: -VPN instance/VLAN ID/Inline ID: -/-/-Protocol: ICMP(1) Inbound interface: GigabitEthernet0/0 Responder: IP/port: 198.76.29.4/2 Source Destination IP/port: 198.76.28.11/0 DS-Lite tunnel peer: -VPN instance/VLAN ID/Inline ID: -/-/-Protocol: ICMP(1) Inbound interface: GigabitEthernet0/1 State: ICMP_REPLY Application: OTHER Role: -Failover group ID: -

Start time: 2021-11-22 14:54:53	TTL: 9s	
Initiator->Responder:	0 packets	0 bytes
Responder->Initiator:	0 packets	0 bytes

Total sessions found: 2

以前の情報に基づいて、送信元 IP アドレス 10.0.0.1 と 10.0.0.2 は、同じパブリックネットワークア ドレス 198.76.28.11 に変換されます。 ただし、10.0.0.1 のポートは 12289 で、10.0.0.2 のポート は 12288 です。RTA が 198.76.28.11 宛ての応答パケットを受信すると、RTA はパケットを変換 用に指定されたポートにより 10.0.0.1 と 10.0.0.2 のどちらに転送するかを区別します。 NAPT は このメソッドを使用して、IP 層とトランスポート層でパケットを変換します。 これにより、パブリック IP アドレスの使用が大幅に改善されます。

手順 6:コンフィギュレーションを元に戻します

RTA の NAPT 設定を削除します。 # NAT アドレスプールを削除します。 [RTA]undo nat address-group 1 # ポートに関連付けられた NAT を削除します。 [RTA]interface GigabitEthernet 0/1 [RTA-GigabitEthernet0/1]undo nat outbound 2000 [RTA-GigabitEthernet0/1]guit

タスク3:Easy IP の設定をする

プライベートネットワーククライアント Client_A および Client_B は、パブリックネットワークサーバ ーにアクセスする必要があります。 パブリックネットワークポートの IP アドレスを使用して、パブリ ックネットワークアドレスとポートを Client_A と Client_B に動的に割り当てます。

手順 1:テスト環境を構築する

テスト環境を構築します。タスク1のステップ1と2を参照してください。

手順2:接続性をチェックします

Client_A と Client_B でそれぞれサーバー(IP アドレス 198.76.29.4)に ping を実行します。出 力情報は次のとおりです。 <Client_A>ping 198.76.29.4 Ping 198.76.29.4 (198.76.29.4): 56 data bytes, press CTRL_C to break Request time out Request time out Request time out Request time out Request time out

手順 3: East IP を設定します

RTA で Easy IP を設定します。

ACL を使用して、ネットワークセグメント 10.0.0.0/24 にある送信元アドレスでフローを定義します。
[RTA]acl basic 2000
[RTA-acl-ipv4-basic-2000]rule 0 permit source 10.0.0.0 0.0.0.255
[RTA-acl-ipv4-basic-2000]quit
インターフェースビューで NAT アドレスを acl 2000 にバインドし、アドレスを提供します。
[RTA]interface GigabitEthernet 0/1
[RTA-GigabitEthernet0/1]nat outbound 2000
[RTA-GigabitEthernet0/1]quit

手順 4: 接続性をチェックします

Client_A と Client_B でそれぞれサーバー(IP アドレス 198.76.29.4)に ping を実行します。出 カ情報は次のとおりです。 <Client_A>ping 198.76.29.4 Ping 198.76.29.4 (198.76.29.4): 56 data bytes, press CTRL_C to break 56 bytes from 198.76.29.4: icmp_seq=0 ttl=253 time=5.000 ms 56 bytes from 198.76.29.4: icmp_seq=1 ttl=253 time=9.000 ms 56 bytes from 198.76.29.4: icmp_seq=2 ttl=253 time=8.000 ms 56 bytes from 198.76.29.4: icmp_seq=3 ttl=253 time=8.000 ms 56 bytes from 198.76.29.4: icmp_seq=4 ttl=253 time=7.000 ms

手順 5:NAT エントリーをチェックします

RTA で NAT エントリーをチェックします。 [RTA]display nat session verbose Slot 0: Initiator: Source IP/port: 10.0.0.1/200 Destination IP/port: 198.76.29.4/2048 DS-Lite tunnel peer: -VPN instance/VLAN ID/Inline ID: -/-/-Protocol: ICMP(1)

Inbound inte	erface: GigabitEther	net0/0		
Responder:				
Source	Source IP/port: 198.76.29.4/5			
Destination	IP/port: 198.76.28.7	1/0		
DS-Lite tun	nel peer: -			
VPN instan	ce/VLAN ID/Inline II	D: -/-/-		
Protocol: IC	MP(1)			
Inbound inte	erface: GigabitEther	net0/1		
State: ICMP_	REPLY			
Application: C	THER			
Role: -				
Failover group	o ID: -			
Start time: 202	21-11-22 15:56:36	TTL: 15s		
Initiator->Res	ponder:	0 packets	0 bytes	
Responder->I	nitiator:	0 packets	0 bytes	
Initiator:				
Source	IP/port: 10.0.0.2/2	238		
Destination	IP/port: 198.76.29.4	4/2048		
DS-Lite tun	nel peer: -			
VPN instan	ce/VLAN ID/Inline II	D: -/-/-		
Protocol: IC	MP(1)			
Inbound inte	erface: GigabitEther	net0/0		
Responder:				
Source	IP/port: 198.76.29	9.4/4		
Destination	IP/port: 198.76.28.7	1/0		
DS-Lite tun	nel peer: -			
VPN instan	ce/VLAN ID/Inline II	D: -/-/-		
Protocol: IC	MP(1)			
Inbound inte	erface: GigabitEther	net0/1		
State: ICMP_	REPLY			
Application: C	THER			
Role: -				
Failover group	o ID: -			
Start time: 202	21-11-22 15:56:30	TTL: 9s		
Initiator->Res	ponder:	0 packets	0 bytes	
Responder->Initiator: 0 packets 0 bytes				

Total sessions found: 2

[RTA]display nat session

Slot 0:

Total sessions found: 0

[RTA]display nat session

Slot 0:

Initiator:

Source IP/port: 10.0.0.1/202

Destination IP/port: 198.76.29.4/2048

DS-Lite tunnel peer: -

VPN instance/VLAN ID/Inline ID: -/-/-

Protocol: ICMP(1)

Inbound interface: GigabitEthernet0/0

Initiator:

Source IP/port: 10.0.0.2/239

Destination IP/port: 198.76.29.4/2048

DS-Lite tunnel peer: -

VPN instance/VLAN ID/Inline ID: -/-/-

Protocol: ICMP(1)

Inbound interface: GigabitEthernet0/0

Total sessions found: 2

以前の情報に基づいて、10.0.0.1 および 10.0.0.2 にアドレス指定された送信元 IP は、RTA のアウトバウンドポートアドレス 198.76.28.1 に変換されました。

NAT 構成後、Client_A がサーバーに ping を実行できる場合、サーバーは Client_A に ping を実行できますか? 出力情報は次のとおりです。

<Server>ping 10.0.0.1

Ping 10.0.0.1 (10.0.0.1): 56 data bytes, press CTRL_C to break

Request time out

RTA には 10.0.0.0/24 へのルートがありません。そのため、サーバーは Client_A に ping を実 行できません。サーバーの ICMP 応答パケットはサーバーアドレス 198.76.29.4 を送信元アドレ スとして使用し、RTA アウトバウンドアドレス 198.76.28.1 を宛先アドレスとして使用するため、 Client_A はサーバーに ping を実行できます。Client_A の実際のソースアドレスは 10.0.0.1 で す。つまり、ICMP 接続は Client_A によって開始され、RTA がアドレスを変換してパケットを転送 するようにトリガーする必要があります。 NAT は RTA アウトバウンドポート GigibitEthernet0/1 に対して有効であることに注意してください。 そのため、サーバーからクライアントに ping を実行 するために ICMP パケットを送信しても、RTA をトリガーしてアドレスを変換することはできません。 サーバーで Client_A に ping を実行する方法を知るには、タスク4 に進みます。

手順 6:コンフィギュレーションを元に戻します

RTA の Easy IP 設定を削除します。 # NAT アドレスプールを削除します。 [RTA]undo nat address-group 1 # ポートに関連付けられた NAT を削除します。 [RTA]interface GigabitEthernet 0/1 [RTA-GigabitEthernet0/1]undo nat outbound 2000 [RTA-GigabitEthernet0/1]quit

タスク4:NAT Server の設定をする

Client_A は、ICMP サービスを外部に提供する必要があります。 Client_A を静的パブリックネットワークアドレス 198.76.28.11 および RTA のポートにマップします。

手順 1: 接続性をチェックします

Client_A と Client_B でそれぞれサーバー(IP アドレス 198.76.29.4)に ping を実行します。出 力情報は次のとおりです。 <Client_A>ping 198.76.29.4 Ping 198.76.29.4 (198.76.29.4): 56 data bytes, press CTRL_C to break Request time out Request time out Request time out Request time out Request time out

手順 2:NAT Server を設定します

RTA に NAT Server を設定します。 [RTA]interface GigabitEthernet 0/1 # アウトバウンドポートのプライベートネットワークサーバーアドレスとパブリックネットワークアドレ スに1対1のNATマッピングを実装します。 [RTA-GigabitEthernet0/1]nat server protocol icmp global 198.76.28.11 inside 10.0.0.1 [RTA-GigabitEthernet0/1]quit

手順 3: 接続性をチェックします

サーバーから Client_A ネットワークアドレス 198.76.28.11 に ping を実行します。 サーバーは Client_A に ping を実行できます。 <Server>ping 198.76.28.11 Ping 198.76.28.11 (198.76.28.11): 56 data bytes, press CTRL_C to break 56 bytes from 198.76.28.11: icmp_seq=0 ttl=253 time=5.000 ms 56 bytes from 198.76.28.11: icmp_seq=1 ttl=253 time=8.000 ms 56 bytes from 198.76.28.11: icmp_seq=2 ttl=253 time=8.000 ms 56 bytes from 198.76.28.11: icmp_seq=3 ttl=253 time=5.000 ms 56 bytes from 198.76.28.11: icmp_seq=3 ttl=253 time=5.000 ms

手順 4:NAT エントリーをチェックします

```
RTA で NAT Server エントリーをチェックします。
[RTA]dis nat session verbose
Slot 0:
Initiator:
  Source
               IP/port: 198.76.29.4/191
  Destination IP/port: 198.76.28.11/2048
  DS-Lite tunnel peer: -
  VPN instance/VLAN ID/Inline ID: -/-/-
  Protocol: ICMP(1)
  Inbound interface: GigabitEthernet0/1
Responder:
  Source
               IP/port: 10.0.0.1/191
  Destination IP/port: 198.76.29.4/0
  DS-Lite tunnel peer: -
  VPN instance/VLAN ID/Inline ID: -/-/-
  Protocol: ICMP(1)
  Inbound interface: GigabitEthernet0/0
State: ICMP_REPLY
Application: OTHER
Role: -
Failover group ID: -
```

```
Start time: 2021-11-22 16:45:42 TTL: 22s
```

Initiator->Responder:	0 packets	0 bytes
Responder->Initiator:	0 packets	0 bytes
Total sessions found: 1		

手順 5:コンフィギュレーションを元に戻します

RTA で NAT Server 設定を削除します。 [RTA]interface GigabitEthernet 0/1 [RTA-GigabitEthernet0/1]undo nat server protocol icmp global 198.76.28.11 # NAT アドレスプールを削除します。 [RTA]undo nat address-group 1 # ポートに関連付けられた NAT を削除します。 [RTA]interface GigabitEthernet 0/1 [RTA-GigabitEthernet0/1]undo nat outbound 2000 [RTA-GigabitEthernet0/1]quit NAT サーバーは、プライベートネットワークサーバーにアクセスするためのパブリックネットワーク クライアントの要件を満たす必要があります。 NAT サーバーは、パブリックネットワーククライアン トがアクセスするプライベートネットワークアドレス/ポートをマップします。実際のアプリケーション では、プライベートネットワーク内の Web サーバーまたは FTP サーバーがパブリックネットワーク の顧客にサービスを提供する必要がある場合、NATサーバーを使用してパブリックネットワークア ドレスをプライベートネットワークサーバーにマップできます。 Client A がサーバーに pingを実行 した場合、pingは正常に実行できますか? Client_Bがサーバーに pingを実行した場合も、ping は正常に実行できますか?

RTA の NAT サーバー構成コマンドに基づいて、Client_A が FTP サーバーの場合、FTP サービ スを外部に提供できますか? 答えはイエスです。 NAT サーバー構成を変更します。 NAT サー バーの構成は次のとおりです。

[RTA]interface GigabitEthernet 0/1

[RTA-GigabitEthernet0/1]nat server protocol tcp global 198.76.28.11 ftp inside 10.0.0.1 ftp [RTA-GigabitEthernet0/1]quit

質問:

1. このテストでは、パブリックネットワークアドレスプールにパブリックネットワークポートアドレス が含まれています。 別のアドレスセグメントが追加された場合、RTB をどのように構成する必要 がありますか?

答え:

RTB のパブリックネットワークアドレスプール宛ての静的ルートを追加します。

2. nat server コマンドの global-address はインターネットアドレスである必要がありますか?

答え:

いいえ、実際には、グローバルアドレスは内部アドレスを基準にしています。 nat server コマンド を実行して構成されたポートは、グローバルネットワークに接続されます。

PPPoE の設定

実習内容と目標

このラボでは以下のことを学びます:

- PPPoE 接続の基本構成。
- PPPoE CHAP 認証の完全な構成。
- PPPoE の一般的な監視および保守コマンドに関する知識とスキルを理解し、理解する

図 5.1 実習ネットワーク

実習装置

本実験に必要な主な設備機材	<u>11-25-57</u>	数量	性記重值
実験装置名前とモデル番号		—————————————————————————————————————	可心于久
MSR36-20	Version7.1	2	なし
PC	Windows 7	2	なし
ネットワークケーブルの接続		2	なし

ネットワーク図

実習手順

表 5.1 はルーターに設定する IP アドレスです。

表 5.1 IP アドレス割り当てスキーマ

装置	インターフェイス	IP アドレス	ゲートウェイ
PPPoE.Server	Virtual template 1	1.1.1.1/8	
PPPoE.Client	dialer 1	ppp-negotiate	dialer 1

タスク1: PPPoE の基本的な設定をします

手順 1: ルーター同士を LAN ケーブルで接続する

図 5.1のようにルーター間のケーブルを接続します。

PPPoE Server、PPPoE Client の設定がデフォルトであることを確実にするには reset savedconfiguration コマンドでデフォルトのコンフィギュレーションへ戻します。

<RTA>reset saved-configuration

The saved configuration file will be erased. Are you sure? [Y/N]:y

Configuration file in flash: is being cleared.

Please wait ...

Configuration file is cleared.

<RTA>reboot

Start to check configuration with next startup configuration file, please wait......DONE!

Current configuration may be lost after the reboot, save current configuration? [Y/N]:n

Please input the file name(*.cfg)[flash:/startup.cfg]

(To leave the existing filename unchanged, press the enter key):y

.

手順 2: PPPoE Server の WAN ポートのための PPP カプセ

ル化の設定と IP アドレスの割り当て

< H3C> system-view [H3C] sysname PPPoE.Server [PPPoE.Server]interface Virtual-Template 1 [PPPoE.Server-Virtual-Template1]ppp authentication-mode chap domain system [PPPoE.Server-Virtual-Template1]ppp chap user h3c [PPPoE.Server-Virtual-Template1]ip address 1.1.1.1 255.0.0.0 [PPPoE.Server-Virtual-Template1]remote address 1.1.1.2 [PPPoE.Server -Virtual-Template1]quit [PPPoE.Server]interface GigabitEthernet 0/1 [PPPoE.Server-GigabitEthernet0/1]pppoe-server bind virtual-template 1 [PPPoE.Server-GigabitEthernet0/1]quit

手順 3: PPPoE Server の domain の認証を ppp local にする

[PPPoE.Server]domain name system [PPPoE.Server-isp-system]authentication ppp local [PPPoE.Server-isp-system]quit

手順 4: PPPoE のローカルユーザーを作成する

[PPPoE.Server]local-user h3c class network
New local user added.
[PPPoE.Server -luser-network-h3c]password simple h3c
[PPPoE.Server -luser-network-h3c]service-type ppp
[PPPoE.Server -luser-network-h3c]authorization-attribute user-role network-operator
[PPPoE.Server -luser-network-h3c]quit

PPP カプセル化後に LCP の情報を確認するために display interface virtual-Template 1コ マンドを実行します。

<PPPoE.Server>display interface Virtual-Template 1 Virtual-Template1 Current state: DOWN Line protocol state: DOWN Description: Virtual-Template1 Interface Bandwidth: 100000 kbps Maximum transmission unit: 1454 Hold timer: 10 seconds, retry times: 5 Internet address: 1.1.1.1/8 (primary) Link layer protocol: PPP LCP: initial Physical: None, baudrate: 10000000 bps Output queue - Urgent queuing: Size/Length/Discards 0/100/0 Output queue - Protocol queuing: Size/Length/Discards 0/500/0 Output queue - FIFO queuing: Size/Length/Discards 0/75/0

タスク2: PPP CHAP の設定をします

テストをする前に、タスク1のようにルーターを初期状態に戻します。

手順 1: PPPoE Client の WAN ポートのための PPP カプセル

化の設定と IP アドレスの設定

< H3C> system-view

[H3C] sysname PPPoE.Client

[PPPoE.Client]interface Dialer 1

[PPPoE.Client]ppp chap user h3c

[PPPoE.Client]ppp chap password simple h3c

[PPPoE.Client]dialer bundle enable

[PPPoE.Client]dialer timer idle 0

[PPPoE.Client]dialer timer autodial 60

[PPPoE.Client]ip address ppp-negotiate

[PPPoE.Client]quit

[PPPoE.Client]interface GigabitEthernet 0/1

[PPPoE.Client -GigabitEthernet0/1]pppoe-client dial-bundle-number 1

%Mar 31 16:30:01:358 2022 H3C IFNET/5/LINK_UPDOWN: Line protocol state on the interface Dialer1 changed to down.

[PPPoE.Client -GigabitEthernet0/1]quit

%Mar 31 16:31:07:856 2022 H3C IFNET/5/LINK_UPDOWN: Line protocol state on the interface Dialer1 changed to up.

手順 2: PPPoE Client でデフォルトゲートウェイの設定をしま

す

[PPPoE.Client]ip route-static 1.1.1.1 32 Dialer 1 [PPPoE.Client]quit < PPPoE.Client> ルーティングテーブルを表示します。

Destinations : 10	Ro	utes	: 10		
Destination/Mask	Proto	Pr	e Cost	NextHop	Interface
0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
1.1.1.1/32	Direct	0	0	1.1.1.1	Dia1
1.1.1.2/32	Direct	0	0	127.0.0.1	InLoop0
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0
127.0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0

手順 3: PPPoE Server で PPPoE セッションのデバッグをしま

す

<PPPoE.Server>debugging pppoe-server all <PPPoE.Server>debugging dialer all DDR is not configured. <PPPoE.Server>display pppoe-server session summary Total PPPoE sessions: 1 Local PPPoE sessions: 1

Ethernet interface: GE0/1Session ID: 1PPP index: 0x140000085State: OPENRemote MAC: b238-66d3-0206Local MAC: b224-7e8e-0106Service VLAN: N/ACustomer VLAN: N/A<PPPoE.Server>display pppoe-server session packetTotal PPPoE sessions: 1Local PPPoE sessions: 1

Ethernet interface: GE0/1 InPackets: 79 Session ID: 1 OutPackets: 82

InBytes: 825	OutBytes: 875
InDrops: 0	OutDrops: 0
<pppoe.server>reset pppoe-server all</pppoe.server>	
<pppoe.server>display pppoe-server session sur</pppoe.server>	nmary
<pppoe.server>display pppoe-server session page</pppoe.server>	cket
<pppoe.server>ping 1.1.1.2</pppoe.server>	
Ping 1.1.1.2 (1.1.1.2): 56 data bytes, press CTRL_(C to break
Request time out	
Request time out	
Ping statistics for 1.1.1.2	
3 packet(s) transmitted, 0 packet(s) received, 100.0)% packet loss
<pppoe.server>%Mar 31 16:39:18:830 2022</pppoe.server>	H3C PING/6/PING_STATISTICS: Ping
statistics for 1.1.1.2: 3 packet(s) transmitted, 0 packet	ket(s) received, 100.0% packet loss.

手順 4: PPPoE Client から PPPoE Server の IP アドレスに

対し ping をします

<PPPoE.Client>ping 1.1.1.1

Ping 1.1.1.1 (1.1.1.1): 56 data bytes, press CTRL_C to break 56 bytes from 1.1.1.1: icmp_seq=0 ttl=255 time=0.000 ms 56 bytes from 1.1.1.1: icmp_seq=1 ttl=255 time=1.000 ms 56 bytes from 1.1.1.1: icmp_seq=2 ttl=255 time=1.000 ms 56 bytes from 1.1.1.1: icmp_seq=3 ttl=255 time=0.000 ms 56 bytes from 1.1.1.1: icmp_seq=4 ttl=255 time=0.000 ms

--- Ping statistics for 1.1.1.1 ---5 packet(s) transmitted, 5 packet(s) received, 0.0% packet loss round-trip min/avg/max/std-dev = 0.000/0.400/1.000/0.490 ms

%Mar 31 16:38:37:675 2022 H3C IFNET/5/LINK_UPDOWN: Line protocol state on the

手順 5: PPPoE Client で PPPoE Server との接続を確認しま

す

<PPPoE.Client>debugging pppoe-client all <PPPoE.Client>debugging dialer all <PPPoE.Client>display pppoe-client session summary

Bundle ID	Interface	VA	Rem	oteMAC	LocalMAC	State
1 1	GE0/1	VA0	b2	224-7e8e-01	06 b238-66d3-02	206 SESSION
<pppoe.c< td=""><td>lient>display p</td><td>ppoe-clien</td><td>it session pa</td><td>acket</td><td></td><td></td></pppoe.c<>	lient>display p	ppoe-clien	it session pa	acket		
Bundle:	1		Interface:	GE0/1		
InPackets:	5		OutPackets	: 4		
InBytes:	230		OutBytes:	78		
InDrops:	0		OutDrops:	0		
<pppoe.c< td=""><td>lient>display o</td><td>dialer</td><td></td><td></td><td></td><td></td></pppoe.c<>	lient>display o	dialer				
Dialer1						
Dialer Ro	oute:					
Dialer nu	mber:					
Dialer Tir	mers(in secon	ds):				
Auto-d	ial: 60	Compete:	20	Enable:	5	
Idle: 0		Wait-for-C	Carrier: 60			
Total Cha	annels: 1					
Free Cha	annels: 0					

手順 6: PPPoE Server で PPPoE Client との接続を確認しま

す

<PPPoE.Server>debugging pppoe-server all <PPPoE.Server >debugging dialer all DDR is not configured. <PPPoE.Server>display pppoe-server session summary Total PPPoE sessions: 1 Local PPPoE sessions: 1

Ethernet interface: GE0/1Session ID: 1PPP index: 0x140000085State: OPENRemote MAC: b238-66d3-0206Local MAC: b224-7e8e-0106Service VLAN: N/ACustomer VLAN: N/A<PPPoE.Server>display pppoe-server session packetTotal PPPoE sessions: 1Local PPPoE sessions: 1

Ethernet interface: GE0/1

Session ID: 1

InPackets: 214	OutPackets: 217
InBytes: 3239	OutBytes: 3509
InDrops: 0	OutDrops: 0

<PPPoE.Server>ping 1.1.1.2

Ping 1.1.1.2 (1.1.1.2): 56 data bytes, press CTRL_C to break

56 bytes from 1.1.1.2: icmp_seq=0 ttl=255 time=1.000 ms

56 bytes from 1.1.1.2: icmp_seq=1 ttl=255 time=0.000 ms

56 bytes from 1.1.1.2: icmp_seq=2 ttl=255 time=2.000 ms

56 bytes from 1.1.1.2: icmp_seq=3 ttl=255 time=1.000 ms

56 bytes from 1.1.1.2: icmp_seq=4 ttl=255 time=0.000 ms

<PPPoE.Server>

基本的な BGP の設定

実習内容と目標

ネットワーク図

このラボでは以下のことを学びます:

● 基本的な BGP の設定を習得します。

2.2.2.2/32 AS65300 loopback0 AS65000 GE_0/0 GE_0/1 3.3.3.3/32 10.10.10.2/30 loopback0 RTB GE_0/0 10.10.10.6/30 GE_0/0 loopback0 10.10.10.5/30 10.10.10.1/30 1.1.1.1/32 10.10.20.1/30 10.10.10.9/30 RTA RTC GE_0/1 GE 0/1 GE_0/0 10.10.20.2/30 10.10.10.10/30 GE_0/1 loopback0 4.4.4.4/32 RTD

図1 実習ネットワーク

実習装置

本実験に必要な主な設備機材	バー・ジョン	数量	性記車面	
実験装置名前とモデル番号		——————————————————————————————————————	行心于久	
MSR36-20	Version7.1	4	ルーター	
ネットワークケーブルの接続		4	ストレートケーブル	

IP アドレス割り当て

表-1 IP アドレス割り当て

装置	インターフェイス	IP アドレス	ゲートウェイ
	G0/0	10.10.10.1/30	-
RTA	G0/1	10.10.20.1/30	-
	Loopback0	1.1.1/32	
	G0/0	10.10.10.2/30	-
RTB	G0/1	10.10.10.6/30	-
	Loopback0	2.2.2.2/32	
	G0/0	10.10.10.5/30	
RTC	G0/1	10.10.10.9/30	
	Loopback0	3.3.3/32	
	G0/0	10.10.10.10/30	
RTD	G0/1	10.10.20.2/30	
	Loopback0	4.4.4.4/32	

実習手順

手順 1:4 つのルーターに IP アドレスを設定する

PC に表-1 のように IP アドレスを設定します。

手順 2: RTA から RTB へ ping する

[RTA]ping 10.10.10.2

Ping 10.10.10.2 (10.10.10.2): 56 data bytes, press CTRL_C to break 56 bytes from 10.10.10.2: icmp_seq=0 ttl=255 time=1.000 ms 56 bytes from 10.10.10.2: icmp_seq=1 ttl=255 time=1.000 ms 56 bytes from 10.10.10.2: icmp_seq=2 ttl=255 time=1.000 ms 56 bytes from 10.10.10.2: icmp_seq=3 ttl=255 time=3.000 ms 56 bytes from 10.10.10.2: icmp_seq=4 ttl=255 time=1.000 ms

手順 3:eBGP peer を設定する

RTA で設定する

[RTA]bgp 65000 [RTA-bgp-default]peer 10.10.10.2 as-number 65300

[RTA-bgp-default]peer 10.10.20.2 as-number 65300

[RTA-bgp-default]address-family ipv4 unicast

[RTA-bgp-default-ipv4]peer 10.10.10.2 enable

[RTA-bgp-default-ipv4]peer 10.10.20.2 enable

[RTA-bgp-default-ipv4]quit

[RTA-bgp-default]quit

RTB で設定する

[RTB]bgp 65300
[RTB-bgp-default]peer 10.10.10.1 as-number 65000
[RTB-bgp-default]address-family ipv4 unicast
[RTB-bgp-default-ipv4]peer 10.10.10.1 enable
[RTB-bgp-default-ipv4]quit
[RTB-bgp-default]quit

RTD で設定する [RTD]bgp 65300 [RTD-bgp-default]peer 10.10.20.1 as-number 65000 [RTD-bgp-default]address-family ipv4 unicast [RTD-bgp-default-ipv4]peer 10.10.20.1 enable [RTD-bgp-default-ipv4]quit [RTD-bgp-default]quit

手順 4:BGP peer 情報を表示する

<RTA>display bgp peer ipv4

BGP local router ID: 1.1.1.1 Local AS number: 65000 Total number of peers: 2

Peers in established state: 1

* - Dynamically created peer

Peer

AS MsgRcvd MsgSent OutQ PrefRcv Up/Down State

10.10.10.2	65300	17	16	0	0 00:13:26 Established
10.10.20.2	65300	0	0	0	0 00:17:22 Connect

<RTA>display bgp routing-table ipv4

Total number of routes: 0

手順 5:network コマンドでローカルネットワークをアドバタイズ

する

[RTA]bgp 65000

[RTA-bgp-default]address-family ipv4

[RTA-bgp-default-ipv4]network 1.1.1.1 255.255.255.255

[RTA-bgp-default-ipv4]quit

[RTA-bgp-default]quit

[RTB]bgp 65300

[RTB-bgp-default]address-family ipv4

[RTB-bgp-default-ipv4]network 2.2.2.2 255.255.255.255

[RTB-bgp-default-ipv4]quit

[RTB-bgp-default]quit

[RTD]bgp 65300 [RTD-bgp-default]address-family ipv4 [RTD-bgp-default-ipv4]network 4.4.4.4 255.255.255.255 [RTD-bgp-default-ipv4]quit [RTD-bgp-default]quit

手順 6: RTA の BGP ルーティングテーブルを表示する

[RTA]display bgp routing-table ipv4

Total number of routes: 3

BGP local router ID is 1.1.1.1 Status codes: * - valid, > - best, d - dampened, h - history s - suppressed, S - stale, i - internal, e - external a - additional-path

Origin: i - IGP, e - EGP, ? - incomplete

Ne	twork	NextHop		MED	LocPrf	Pre	efVal Path/Ogn
* > 1.1	.1.1/32	127.0.0.1	0			32768	i
* >e 2.2.	2.2/32	10.10.10.2	0			0	65300i
* >e 4.4.	4.4/32	10.10.20.2	0			0	65300i

RTA から RTD への接続テスト

[RTA]ping 4.4.4.4

Ping 4.4.4 (4.4.4): 56 data bytes, press CTRL_C to break 56 bytes from 4.4.4.4: icmp_seq=0 ttl=255 time=2.000 ms 56 bytes from 4.4.4.4: icmp_seq=1 ttl=255 time=0.000 ms 56 bytes from 4.4.4.4: icmp_seq=2 ttl=255 time=0.000 ms 56 bytes from 4.4.4.4: icmp_seq=3 ttl=255 time=0.000 ms 56 bytes from 4.4.4.4: icmp_seq=4 ttl=255 time=0.000 ms

手順 3:iBGP peer を設定する

[RTB]bgp 65300

[RTB-bgp-default]peer 4.4.4.4 as-number 65300

[RTB-bgp-default]peer 4.4.4.4 connect-interface LoopBack 0

[RTB-bgp-default]address-family ipv4 unicast

[RTB-bgp-default-ipv4]peer 4.4.4.4 enable

[RTB-bgp-default-ipv4]quit

[RTB-bgp-default]quit

[RTD]bgp 65300

[RTD-bgp-default]peer 2.2.2.2 as-number 65300

[RTD-bgp-default]peer 2.2.2.2 connect-interface LoopBack 0

[RTD-bgp-default]address-family ipv4 unicast

[RTD-bgp-default-ipv4]peer 2.2.2.2 enable

[RTD-bgp-default-ipv4]quit

[RTD-bgp-default]quit

手順 3: iBGP peer 情報を表示する

[RTD]display bgp peer ipv4

BGP local router ID: 4.4.4.4Local AS number: 65300Total number of peers: 2Peers in established state: 1

* - Dynamically of	created peer				
Peer	AS	MsgRcvd	MsgSer	nt OutQ	PrefRcv Up/Down State
2.2.2.2	65300	0	0	0	0 00:01:11 Connect
10.10.20.1	65000	11	11	0	1 00:05:51 Established

手順 4:BGP ルーティングテーブルを表示する

[RTD]display bgp routing-table ipv4

Total number of routes: 2

BGP local router ID is 4.4.4.4 Status codes: * - valid, > - best, d - dampened, h - history s - suppressed, S - stale, i - internal, e - external a - additional-path Origin: i - IGP, e - EGP, ? - incomplete

Network	NextHop	MED	LocPrf	PrefVal Path/Ogn			
* >e 1.1.1.1/32	10.10.20.1	0	0	65000i			
* > 4.4.4/32	127.0.0.1	0	3276	58 i			
[RTD]display ip routing-table							
Destinations : 18	Routes : 18						

Destination/Mask Proto Pre Cost NextHop Interface

0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
1.1.1/32	BGP		255 0	10.10.20.1	GE0/1
4.4.4/32	Direct	0	0	127.0.0.1	InLoop0
10.10.10.8/30	Direct	0	0	10.10.10.10	GE0/0
10.10.10.8/32	Direct	0	0	10.10.10.10	GE0/0
10.10.10.10/32	Direct	0	0	127.0.0.1	InLoop0
10.10.10.11/32	Direct	0	0	10.10.10.10	GE0/0
10.10.20.0/30	Direct	0	0	10.10.20.2	GE0/1
10.10.20.0/32	Direct	0	0	10.10.20.2	GE0/1
10.10.20.2/32	Direct	0	0	127.0.0.1	InLoop0
10.10.20.3/32	Direct	0	0	10.10.20.2	GE0/1
127.0.0.0/8	Direct	0	0	127.0.0.1	InLoop0
127.0.0.0/32	Direct	0	0	127.0.0.1	InLoop0
127.0.0.1/32	Direct	0	0	127.0.0.1	InLoop0
127.255.255.255/32	Direct	0	0	127.0.0.1	InLoop0
224.0.0.0/4	Direct	0	0	0.0.0.0	NULL0
224.0.0.0/24	Direct	0	0	0.0.0.0	NULL0
255.255.255.255/32	2 Direct	0	0	127.0.0.1	InLoop0